红外光谱仪是利用物质对不同波长的红外辐射的吸收特性,进行分子结构和化学组成分析的仪器。红外光谱仪通常由光源,单色器,探测器和计算机处理信息系统组成。 根据分光装置的不同,分为色散型和干涉型。对色散型双光路光学零位平衡红外分光光度计而言,当样品吸收了一定频率的红外辐射后,分子的振动能级发生跃迁,透过的光束中相应频率的光被减弱,造成参比光路与样品光路相应辐射的强度差,从而得到所测样品的红外光谱。
电磁光谱的红外部分根据其同可见光谱的关系,可分为近红外光、中红外光和远红外光。 远红外光(大约400-10 cm-1)同微波毗邻,能量低,可以用于旋转光谱学。中红外光(大约4000-400 cm-1)可以用来研究基础震动和相关的旋转-震动结构。更高能量的近红外光(14000-4000 cm-1)可以激发泛音和谐波震动。
红外光谱法的工作原理是由于震动能级不同,化学键具有不同的频率。共振频率或者振动频率取决于分子等势面的形状、原子质量、和最终的相关振动耦合。为使分子的振动模式在红外活跃,必须存在双极子的改变。具体的,在波恩-奥本海默和谐振子近似中,例如,当对应于电子基态的分子哈密顿量能被分子几何结构的平衡态附近的谐振子近似时,分子电子能量基态的势面决定的固有振荡模,决定了共振频率。
然而,共振频率经过一次近似后同键的强度和键两头的原子质量联系起来。这样,振动频率可以和特定的键型联系起来。简单的双原子分子只有一种键,那就是伸缩。
更复杂的分子可能会有许多键,并且振动可能会共轭出现,导致某种特征频率的红外吸收可以和化学组联系起来。常在有机化合物中发现的CH2组,可以以 “对称和非对称伸缩”、“剪刀式摆动”、“左右摇摆”、“上下摇摆”和“扭摆”六种方式振动。